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The Consultative Committee for Space Data Standards (CCSDS) recommends

that space communication links employ a concatenated, error-correcting, channel-

coding system in which the inner code is a convolutional (7,1/2) code and the

outer code is a (255,223) Reed-Solomon code. The traditional implementation is to

perform the node synchronization for the Viterbi decoder and the frame synchro-
nization for the Reed-Solomon decoder as separate, sequential operations. This

article discusses a unified synchronization technique that is required for deep space

missions that have data rates and signal-to-noise ratios (SNRs) that are extremely

low. This technique combines frame synchronization in the bit and symbol domains

and traditional accumulated-metric growth techniques to establish a joint frame

and node synchronization. A variation on this technique is used for the Galileo

spacecraft on its Jupiter-bound mission.

I. Introduction

The traditional approach to decoding the channel error-

correcting coding in the space communication links [1] is
for the implementation to follow the CCSDS functional

model [2] shown in Fig. l, i.e., establish a concatenated de-

coder consisting of two distinct stages: a Viterbi decoder
and a Reed-Solomon decoder, with no feedback between

the two stages. Each of the two decoders requires appro-
priate synchronization: the Viterbi decoder requires node

synchronization (the grouping of n-tuplets of soft symbols

that correspond to a single information bit), and the Reed-

Solomon decoder requires frame synchronization (the de-
tection of the transport frame and the extraction of Reed-

Solomon words). In most applications, data received prior
to the accomplishment of synchronization are lost; how-

ever, as long as the symbol-signal-to-noise ratio (SSNR,

Es/No) is relatively high, the synchronization time is short

and the data loss is often ignored.

For a deep space communications environment, such an

approach is often deficient--Es/No could be low, hence

the synchronization time, measured in number of bits,

would be longer. As the data rate decreases, the synchro-
nization time, fixed in terms of number of bits, can result

in loss of a significant percent of total data. Also, the se-

quential nature of the synchronization process compounds

the data loss. To speed the synchronization process and

reduce the data loss, we introduce here a joint synchroniza-

tion technique that is being applied in the ground support
for the Galileo deep space mission to Jupiter [3].

Section II introduces the core algorithms and the joint

synchronization approach. Section III discusses the ap-
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plication of joint synchronization in several scenarios, and

Section IV presents two specific cases where the joint syn-

chronization approach is applied.

II. Description of Synchronization
Algorithms

The structure of tile general joint synchronization de-

coder is shown in Fig. 2. It consists of the traditional

series of processing functions, namely a Viterbi decoder, a

deinterleaver, and a Reed-Solomon decoder, preceded by a

soft symbol buffer. The processing functions are controlled

by a joint synchronization function, Which in turn relies on

several core synchronization algorithms. In this article, we
select three such core synchronization algorithms: a frame-

marker correlator in the symbol domain, a frame-marker

correlator in the bit domain, and an accumulated-metric

growth-rate indicator. It is worth noting that decoders of-

ten contain other synchronization indicators that can be

integrated into a joint synchronizer using techniques sim-
ilar to those described below.

A. Bit-Domain Correlation

This algorithm examines the Viterbi-decoded bits at

the output of the Viterbi decoder for presence of the frame

marker pattern. When the pattern is detected, it indicates
that the node synchronization hypothesis is "true" and, by

definition, frame synchronization was accomplished.

Let the transport frame be of length M, including a

frame marker of length N at the beginning of each frame.

Let the frame marker be (do(i), i = O, ..., N- 1, do(i) =

+1}. Then, the transmitted data stream can be repre-
sented as

/do(i rood M),
D(i) \ data,

i mod M < N)i rood M > N (1)

The bit-domain correlation algorithm computes the

running correlation, Jbit_(k), between the frame marker
and the received signal s(i)

N-I
1

Jbit,(k) = -_ _ do(i)s(i + k) (2)
i=0

where s(i) is D(i) contaminated by the effects of trans-
mission, reception, and decoding. The expected value of

Jbit,(k) is 1 when the received sequence is perfectly aligned
with the frame marker. Elsewhere, for a properly selected

frame marker, its autocorrelation properties ensure that

the expected value of Jbi,8(k) is near zero. In practice,
there are two methods to implement the bit-domain cor-

relation algorithm:

(1) Testing for threshold, where the value of Jbits(k) is

compared against a threshold for a large number of

k's. When the value of Jb,, (k) exceeds the threshold

for the first time at ko, the hypothesis that s(i+ ko)
is the beginning of the frame marker is declared true.

(2) Testing for maximum, where the value Jbit,(k) is

maximized over all 0 < k < M, regardless of a

threshold. Let k0 be the location where Jbits(k)

reaches its highest value over the search range; then

the hypothesis that s(i + ko) is the beginning of a
frame marker is declared true.

In the special interest of transparent convolutional

codes (i.e., if the soft symbols are inverted, the Viterbi-

decoded bits are inverted as well), Jb_t,(k) may take the
values of +1 for "correct symbol phase correlation" or -1

for "inverted symbol phase correlation," indicating that

the Viterbi decoder is synchronized but the soft symbols
are inverted and must be returned to the correct phase

(i.e., reinverted) prior to deinterleaving. For transparent

codes, implementing the bit-domain correlation requires
searching for both a maximum and a minimum of Jbit,(k),

or alternatively employing high and low thresholds.

The bit-correlation approach is powerful and usually

highly reliable. Its main disadvantage is that it requires

hypothesis testing at all possible offsets of the soft symbol
n-tuplets, as well as the correct and inverted symbol phases

(only for nontransparent convolutional code). Thus, for a

(15,1/6) nontransparent convolutional code, a large num-

ber of attempts (12 attempts in the worst case, 6 attempts

on the average) are required before synchronization is ac-
complished.

B. Symbol-Domain Correlation

This algorithm examines the soft symbols prior to the

Viterbi decoder for presence of an encoded version of the

frame marker pattern. When the pattern is detected, it

provides both the node and frame synchronization prior

to any decoding operation. In this case, the symbol corre-
lation function is

N

J,,m(k) - N - (K - 1) .i_g F, (do(i)) S(i + k) (3)

where F_ (do(i)) is the n-tuplet of soft symbols correspond-

ing to a single bit of the frame marker, S(i + k) is an n-
tup!et of received symbols, and the operation on the two
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n-tuplets is a dot product. The main disadvantage of this

algorithm is that correlation can be performed only over

part of the frame marker. For a frame marker of N bits
and convolutional code of length K, only the symbols cor-

responding to the last N - (K - 1) bits are known in the

symbol domain--the symbols that correspond to the first
K - 1 bits of the frame marker are corrupted by the un-

known previous contents of the encoder. Depending on

N, K, and E_/No, the partial correlation may degrade
the correlation SNR sufficiently to make synchronization
difficult.

To assess the performance of synchronization using

symbol-domain correlation, let us compute the probability

of false detection. Let the soft symbol be modeled as hav-

ing a value of +m + n,ym(O, where =t:m has an equal proba-

bility of being +rn and -m and n,ym(0 is N(0, trsym).l Let
us assume that the frame marker has been selected such

that its autocorrelation is near ideal, i.e., no significant

secondary correlation peaks exist. Let us further assume
that the correlation between the frame marker and a noise-

less set of received symbols contains no significant peaks.

Then, when the received symbols are not aligned with the

frame marker, Jsyrn(k) can be modeled as N(0, a),

a = tr, yr_/X/n(N - (K - 1)) (4)

while when the received symbols are aligned with the frame

marker, J, ym(k) is modeled as N(m, cr). The probability

of selecting an incorrect peak is given by

oo

1 =_,,_ 2PrD = _--_ e-_
--00

1 -,,4
x l- _e dy dx (5)

If the effect of correlation between a random symbol

pattern and the frame marker is included, the result-

ing probability of selecting an incorrect peak is given by

Eq. (6) below. Figure 3 plots PFD as a function of the
correlation SNR, 10 log (m_/2_r 2)

1A zero-mean, normally distributed random variable with a stan-
dard deviation of asyrn.

PFD z -- / x-m _

x [1-(21-_ .___o(N )

x V'__o" dy dx (6)
--00

C. Accumulated Metric Growth Rate

This algorithm examines the accumulated metric at all

the Viterbi decoder states, indicating the level of "mis-

match" between the received soft symbol stream and the

bit stream associated with the specific state. Even though

the accumulated metric varies from state to state, its peak-

..to-peak variation is bounded by

(constraint length - 1)(max branch metric)

Because of this bound, implementors often monitor

the growth rate of a single selected accumulated metric

where at high Eb/No there is a clear distinction between

in-node-synchronization and out-of-node-synchronization
conditions. The distinction between the two conditions be-

comes more blurry as Eb/No decreases; the thresholds for

detecting the in-lock and out-of-lock hypotheses must be
chosen carefully to meet the probability-of-detection and

false-alarm requirements. Unfortunately, threshold selec-

tion must be accomplished empirically, as the growth rate

measurement does not lend itself to analytic expressions.

III. Unified Synchronization

The objective of the unified synchronization approach

below is to realize the attractive benefits of the symbol-

domain correlation; namely, accomplish node and frame

synchronization prior to the Viterbi decoder, while miti-

gating the algorithm's degraded performance at low SNR.

Case 1: Independent frames, minimal restric-

tion on latency. Let us first observe that many communi-

cations links consist of transport frames that are indepen-
dently encoded as a result of the fact that the frame syn-

chronization marker is longer than the constraint length

of the convolutional code, therefore serving as an effec-

tive barrier between the frames, resetting the encoder to
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a known state. Let us also assume that there are mini-

mal restrictions on latency. 2 In this case, a simple decoder

architecture is possible, 3 as shown in Fig. 4.

In this architecture, no decoding is initiated until the

input stream has been separated into frames, using frame-
marker correlation in the symbol domain. Once the frame

detection is verified, the frames are processed indepen-

dently; the function labeled "Viterbi and Reed-Solomon
decoders" is replicated as many times as needed to meet

the required data rate and latency. This architecture is es-

pecially suitable for implementation with parallel proces-
sors and for cases where a "pool" of resources is available

to cover the needs of many users with diverse needs.

frame synchronization. The resulting decoder architecture

is shown in Fig. 6--the Viterbi decoder relies on its in-

ternal measures, e.g., accumulated-metric-growth rate, to
achieve node synchronization, but receives feedback from

the symbol-domain and bit-domain frame-marker correla-

tors. In this architecture, multiple Viterbi decoders could

be employed to expedite the detect_ion of the node syn-

chronization over multiple symbol phase offsets.

IV. Examples

The joint synchronization approach has been applied in

two decoder systems developed at JPL. The first decoder,
the Maximum-Likelihood C0nvolutionai Decoder Mark III

Case 2: Independent frames, restriction on la- (MCD III) [4,5], is a fully programmable (K, 1/n) Viterbi

teney. The process of frame detection often requires per- decoder with 3 < K < t5 and 2 < n < 6. It is imple-
forming the correlation over multiple flames and bridging

"gaps" that eliminate frame markers, therefore introduc-

ing a substantial, and sometimes unacceptable, latency.
In this case, the architecture can be modified as shown in

Figl 5, utilizing the symbol-domain flame-marker corre-

lator only for tentative frame identification. Decoding of
frames starts immediately following this tentative detec-

tion. However, results from the other synchronization al-

gorithms are used to verify the synchronization and are fed
back to allow correction of the synchronization, if needed.

The extent of input buffering and feedback depends on
a trade-off between the latency requirement and the imple-

mentation restrictions on data rate and available storage.

Case 3: Nonindependent frames or tight latency

requirements. This case occurs either when the frame
marker is shorter than the convolutional code constraint

length (hence, the encoding is not independent from frame

to frame) or when the tight latency requirement dictates
that Viterbi decoding must be initiated even prior to

2Latency is the time delay between the signal arrival at the antenna
and the time a fully decoded transport frame is available at the
output of the decode?.

3 E. Greenberg, JPL Interoffice Memorandum 3171-93-20 (internal
document), Jet Propulsion Laboratory, Pasadena, California, April
6, 1993.

mented in a fully parallel architecture using 64 identical,

custom, very large-scale integrated circuit (VLSI) devices

capable of operating at bit rates of up to 1.1 Mbits/sec.
The MCD III incorporates all three synchronization algo-

rithms described in Section II, resulting in a flexible syn-
chronization architecture.

A more recent example is the Feedback Concatenated

Decoder (FCD) developed slSecifically for the Galileo mis-

sion [6]. This decoder is implemented in software on a four-

central-processing-unit (CPU) SUN workstation. It is ca-

pable of performing (14,1/4) Viterbi and four-redundancy

(255,x) Reed-Solomon decoding as well as the associated
redecoding at 160 bits/see. As an integrated decoder, it

is oriented toward symbol-domain frame synchronization,

while attempting to minimize latency (case 2 above).

V. Conclusions

We have presented a method of performing joint frame

and node synchronization for a concatenated decoder.

This approach enables a design that shortens the acquisi-
tion time and allows for parallel implementation of the de-

coder resource-demanding tasks, thus improving the over-

all decoder efficiency.
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traditionalFig. 1. Error-correcting encoder/decoder configuration.
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Fig. 2, Joint-synchronization decoder structure.
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Fig. 4. Decoder architecture without synchronization feedback.
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Fig. 6. Decoder architecture when the Viterbi decoder is self-synchronized.
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